

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name Informative Methods in Physics an	d Tachniqua			
Course	u recinique			
Field of study		Year/Semester		
Technical Physics		1/2		
Area of study (specialization)		Profile of study		
Area of study (specialization)		general academic		
Lovel of study		Course offered in		
Level of study				
First-cycle studies		polish		
Form of study		Requirements		
full-time		compulsory		
Number of hours				
Lecture	Laboratory classes	other (e.g. online)		
15	30			
Tutorials	Projects/seminars	;		
Number of credit points				
3				
Lecturers				
Responsible for the course/lecturer	: Responsible for the course/lecturer:			
dr inż. Justyn Barańska				
justyna.baranska@put.poznan.pl				
Wydział InżynierII Materiałowej i Fizyki Technicznej				

ul. Piotrowo 3, 60-965 Poznań

Prerequisites

Knowledge of physics, mathematics and computer science at the level after the first degree of education in the field of technical physics. Skill in basic use a Windows computer. Active attitude when solving problems, understanding the need to expand one's competences

Course objective

1. Acquaintance of the students with the basics of the C ++ language that enables the creation of numerical programs that solve problems appearing in physics and technology.

2. Demonstrating the usefulness of the computer as a tool supporting the analysis and solving of simple physical and technical problems.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

3. Developing student's ability to use a computer independently to analyze simple problems in the field of physics and technology, in particular through the development and implementation of programs for simulating simple physical processes.

Course-related learning outcomes

Knowledge

1. Student, who has completed the course, is able to select and describe mathematical apparatus necessary to describe the laws of physics and solve problems, including: basic numerical algorithms used in technical physics [K2_W01]

2. Student, who has completed the course, is able to list and describe the structures and instructions of the selected programming environment supporting engineering calculations [K1_W05]

Skills

1. Student, who has completed the course, is able use mathematical knowledge to create computer models and write numerical algorithms in the field of technical physics [K2_U01]

2. Student, who has completed the course, is able to correctly use the data structures and instructions of the selected programming environment and the learned numerical algorithms to solve a problem in the field of technical physics, perform visualization and computer simulation, and make a critical analysis of the obtained results [K1_U09, K1_U19]

3. Student, who has completed the course, on the basis of the available documentation in English, can independently find additional information about data structures, instructions and available libraries [K1_U11].

Social competences

1. Student, who has completed the course, is able to work responsibly on a designated multi-threaded task, independently and in a team, [K2_K01]

2. Student, who has completed the course, is able to notices the necessity of ethical use of computer software in accordance with its licenses [K1_K02].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

W01, W05 : : Assessment of knowledge demonstrated in written work on the grounds of scored points

Assessment of an individual oral presentation with the use of a computer program.

50.1%-70.0% (3)

70.1%-90.0% (4)

90.1%-100.0%(5)

U01, U09, U011, U019: Assessment of programming skills demonstrated in practice.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Assessment of an individual oral presentation with the use of a computer program.

Assessment of activity during Laboratory classes.

50.1%-70.0% (3)

70.1%-90.0% (4)

90.1%-100.0%(5)

K01, K02 Assessment of an individual oral presentation with the use of a computer program.

Programme content

- A. Fundamentals
- 1. Introduction to Visual C ++, programs in text and graphical mode.
- 2. Support for standard input output in C and C ++.
- 3. Variables, constants. Defining a function.
- 4. Passing values to functions. The concept of indicator, reference, value.
- 5. Complex types: structures, typedef, pointers to functions.

6. Recursion - comparison of the implementation of the factorial (n) function in iterative and recursive terms.

- 7. Sorting algorithms.
- 8. Signal handling.
- B. Object oriented programming
- 1. The concept of classes, constructors, properties, methods.
- 2. Static methods.
- 3. Inheritance, virtual methods.
- 4. Friendly classes, operator overloading.

Teaching methods

- 1. Lectures: multimedia presentation, presentation illustrated with examples given on the blackboard.
- 2. Laboratory classes: practical exercises, conducting, discussion, teamwork.

Bibliography

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic

1. Jerzy Grębosz, "Symfonia C++: programowanie w języku C++ orientowane obiektowo", tom 1,2 i 3, Oficyna Kallimach, 2000.

2. BjarneStroustrup, Język C++", Wydawnictwa Naukowo-Techniczne, Warszawa 1998.

Additional

Breakdown of average student's workload

	Hours	ECTS
Total workload	90	3,0
Classes requiring direct contact with the teacher	50	1,5
Student's own work (literature studies, preparation for	40	1,5
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate